Next generation information technology requires higher signal processing speed (THz) and low energy consumption strategies. Surface plasmon polaritons (SPPs) is one of the most promising candidates to serve as the information carrier in the future ultrafast and energy efficient photonic or photonic integrated electronic circuits. I am interested in exploring the ultrafast electron, phonon and spin dynamics with femtosecond laser microscopy or spectroscopy. My recent research mainly focuses on the SPPs dynamics as well as devices in the nanoscale. My studies show the SPPs propagate at almost the speed of light on the metal surface. The SPPs signal can be also amplified and directionally controlled, which are basic elements for the photonic circuits. My future goal is to contribute and push forward the application of SPPs in the information and energy related technologies.
Surface Plasmon-Based Pulse Splitter and Polarization Multiplexer, J. Phys. Chem. Lett. 9, 6164-6168 (2018) https://doi.org/10.1021/acs.jpclett.8b02643
Plasmons signal enhancement and directional launching from a 3D structure, J. Phys. Chem. Lett. 8, 2695-2699 (2017) https://doi.org/10.1021/acs.jpclett.7b00852
Plasmons directional launching from symmetric structure, J. Phys. Chem. Lett.8, 49-54 (2017) https://doi.org/10.1021/acs.jpclett.6b02509
Plasmons signal enhancement during the transportation, ACS Photonics 3, 2413-2419 (2016)
https://doi.org/10.1021/acsphotonics.6b00636
Plasmons running at almost the speed of light on the metal surface, Nano Lett. 15, 3472-3478 (2015) https://doi.org/10.1021/acs.nanolett.5b00803
Manipulation of surface plasmon field on the metal surface, J. Phys. Chem. Lett. 5, 4243-4248 (2014) https://doi.org/10.1021/jz502296n